Dependencies with FCA and Pattern Structures: a Tutorial

Jaume Baixeries

Departament de Ciències de la Computació
Universitat Politècnica de Catalunya, 08034 Barcelona, Catalonia

jbaixer@cs.upc.edu

ICFCA Tutorial. June 292021

About this Tutorial

- This tutorial show the most relevant results that we have been presenting in FCA venues and journals during the last years.
- We will present our results by the example. You always can refer to our papers for technical details.

Authors

This is a joint work that started in 2012 between:

Amedeo Napoli. Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France.

Mehdi Kaytoue. Infologic. 19 rue Victorien Sardou - 69007 LYON. France.

Víctor Codocedo. Universidad Técnica Federico Santa María. Departamento de Informática. San Joaquín, Santiago, Chile.

Jaume Baixeries. Universitat Politècnica de Catalunya. Departament de Ciències de la Computació. Barcelona. Catalonia.

Summary of the presentation

(1) Introduction
(2) Notation
(3) Functional Dependencies

4 Soft Functional Dependencies
(5) Degenerate Multivalued Dependencies

6 Conclusion
(1) Introduction
(2) Notation
(3) Functional Dependencies

4 Soft Functional Dependencies
(5) Degenerate Multivalued Dependencies

6 Conclusion

What is a Dependency?

- Functional dependencies, multivalued dependencies, join dependencies, etc, are defined in all texts.
- In Database books, a dependency (without any other modifier) is not defined.

However, the concept of dependency is familiar to everyone.

What is a Dependency?

Dependencies, in general, are semantically meaningful and syntactically restricted sentences of the predicate calculus that must be satisfied by any "legal" database.

Paris C. Kanellakis

In Handbook of Theoretical Computer Science. Volume B Formal Models and Semantics by Jan van Leeuwen (ed.)

What is a Dependency?

Definition + Usage

(1) semantically meaningful
(2) syntactically restricted sentences of the predicate calculus
(3) that must be satisfied by any "legal" database.

What is a Dependency?

Definition

(1) semantically meaningful
(2) syntactically restricted sentences of the predicate calculus
(3) that must be satisfied by any "legal" database

$$
\text { dependency }=\text { syntax (predicate calculus) }+ \text { semantics }
$$

What is a Dependency?

Usage

(1) semantically meaningful
(2) syntactically restricted sentences of the predicate calculus
(3) that must be satisfied by any "legal" database

$$
\text { dependency }=\text { restriction }
$$

What is a Dependency?

The usage of dependencies can be seen from two points of view
(1) As a restriction that must apply to a dataset. This is a a priori point of view: it must apply before we create the dataset. This is the point of view of the database practitioners.
(2) As a description of a pattern that exist in a dataset. This is the point of view of a data analyst.

What is a Dependency?

Dependencies may appear in different fields

- (Functional, multivalued, join, ...) dependencies in the relational database field (restriction).
- Implications, association rules, in the Knowledge Discovery field (description).

What do we do?

Instead of First Order Logic, we choose Formal Concept Analysis

We embed the semantics of a dependency into the incidence relation in FCA

What do we do?

Given a dataset

id	Month	Year	Av. Temp.	City
t_{1}	1	1995	36.4	Milan
t_{2}	1	1996	33.8	Milan
t_{3}	5	1996	63.1	Rome
t_{4}	5	1997	59.6	Rome
t_{5}	1	1998	41.4	Dallas
t_{6}	1	1999	46.8	Dallas
t_{7}	5	1996	84.5	Houston
t_{8}	5	1998	80.2	Houston

What do we do?

Given a dataset, we want to compute/characterize the set of dependencies that hold on it.

id	Month	Year	Av. Temp.	City	
t_{1}	1	1995	36.4	Milan	
t_{2}	1	1996	33.8	Milan	
t_{3}	5	1996	63.1	Rome	
t_{4}	5	1997	59.6	Rome	
t_{5}	1	1998	41.4	Dallas	
t_{6}	1	1999	46.8	Dallas	
t_{7}	5	1996	84.5	Houston	
t_{8}	5	1998	80.2	Houston	
\{Month, City $\} \rightarrow\{$ Av.Temp $\}$					
\{Av.Temp $\} \rightarrow\{$ City $\}$					

What do we do?

How? We compute a formal context (or a pattern structure)

id	Month	Year	Av. Temp.	City
t_{1}	1	1995	36.4	Milan
t_{2}	1	1996	33.8	Milan
t_{3}	5	1996	63.1	Rome
t_{4}	5	1997	59.6	Rome
t_{5}	1	1998	41.4	Dallas
t_{6}	1	1999	46.8	Dallas
t_{7}	5	1996	84.5	Houston
t_{8}	5	1998	80.2	Houston

\mathbb{K}	Month	Year	Av. Temp.	City
$(1,2)$	\times	\times		
$(1,3)$				\times
$(1,4)$		\times		
$(2,3)$				
$(2,4)$		\times	\times	
$(3,4)$	\times			

What do we do?

How? We compute a formal context (or a pattern structure) such that the INTERPRETATION of a dependency in the formal context decides if this dependency holds in the dataset.

id	Month	Year	Av. Temp.	City
t_{1}	1	1995	36.4	Milan
t_{2}	1	1996	33.8	Milan
t_{3}	5	1996	63.1	Rome
t_{4}	5	1997	59.6	Rome
t_{5}	1	1998	41.4	Dallas
t_{6}	1	1999	46.8	Dallas
t_{7}	5	1996	84.5	Houston
t_{8}	5	1998	80.2	Houston

\mathbb{K}	Month	Year	Av. Temp.	City
$(1,2)$	\times	\times		
$(1,3)$				\times
$(1,4)$		\times		
$(2,3)$				
$(2,4)$		\times	\times	
$(3,4)$	\times			

What do we do?

What is the INTERPRETATION of a dependency?

We validate the dependency in the formal context (pattern structure)

Why do we do it?

- Theoretical interest. We have a unified framework to characterize different kinds of dependencies.
- Practical interest (ongoing work). We want to use FCA algorithms to compute basis of sets of dependencies.

(1) Introduction

(2) Notation

(3) Functional Dependencies

4 Soft Functional Dependencies
(5) Degenerate Multivalued Dependencies

6 Conclusion

Notation

A table dataset consists of a set of attributes and a set of tuples

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	$\mathbf{1}$	1995	36.4	Milan
$t_{\mathbf{2}}$	$\mathbf{1}$	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	1	1998	41.4	Dallas
$t_{\mathbf{6}}$	$\mathbf{1}$	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

$$
\begin{aligned}
\text { Attributes } & =\mathcal{U}=\{\text { Month, Year, Av. Temp., City }\} \\
\text { Tuples } & =T=\left\{t_{\mathbf{1}}, t_{\mathbf{2}}, t_{\mathbf{3}}, t_{\mathbf{4}}, t_{\mathbf{5}}, t_{\mathbf{6}}, t_{\mathbf{7}}, t_{\mathbf{8}}\right\}
\end{aligned}
$$

Notation

A table dataset consists of a set of attributes and a set of tuples

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	$\mathbf{1}$	1995	36.4	Milan
$t_{\mathbf{2}}$	$\mathbf{1}$	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	1	1998	41.4	Dallas
$t_{\mathbf{6}}$	$\mathbf{1}$	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

$$
\begin{aligned}
\text { Attributes } & =\mathcal{U}=\{\text { Month, Year, Av. Temp., City }\} \\
\text { Tuples } & =T=\left\{t_{\mathbf{1}}, t_{\mathbf{2}}, t_{\mathbf{3}}, t_{\mathbf{4}}, t_{\mathbf{5}}, t_{\mathbf{6}}, t_{\mathbf{7}}, t_{\mathbf{8}}\right\}
\end{aligned}
$$

Notation

We also use the restriction of a tuple

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	$\mathbf{1}$	1995	36.4	Milan
$t_{\mathbf{2}}$	$\mathbf{1}$	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	1	1998	41.4	Dallas
t_{6}	1	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

$$
t_{3}(<\text { Month, City }>)=<5, \text { Rome }>
$$

Pattern Structures

- Bernhard Ganter and Sergei O. Kuznetsov. Pattern Structures and Their Projections, in Proceedings of the 9th International Conference on Conceptual Structures (ICCS-2001), LNCS 2120, pages 129-142, 2001.
- Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli and Sébastien Duplessis. Mining Gene Expression Data with Pattern Structures in Formal Concept Analysis, Information Science, 181(10):1989-2001, 2011.
- Mehdi Kaytoue, Victor Codocedo, Aleksey Buzmakov, Jaume Baixeries, Sergei O. Kuznetsov and Amedeo Napoli. Pattern Structures and Concept Lattices for Data Mining and Knowledge Processing, in Proceedings of ECML-PKDD (European Conference on Machine Learning and Knowledge Discovery in Databases), Springer Lecture Notes in Computer Science 9286, pages 227-231, 2015.

Pattern Structure: Notation

A pattern structure $(G,(D, \sqcap), \delta)$ is composed of:

- G a set of objects,
- (D, \sqcap) a semi-lattice of descriptions or patterns,
- $\delta: G \mapsto D$ a mapping such as $\delta(g) \in D$ describes object g.

The Galois connection for $(G,(D, \sqcap), \delta)$ is defined as:

- The maximal description representing the similarity of a set of objects:

$$
A^{\square}=\sqcap_{g \in A} \delta(g) \quad \text { for } A \subseteq G
$$

- The maximal set of objects sharing a given description:

$$
d^{\square}=\{g \in G \mid d \sqsubseteq \delta(g)\} \quad \text { for } d \in(D, \sqcap)
$$

Equivalence FCA and Pattern Structures

FCA \Rightarrow Pattern Structures

Considering a standard formal context ($G, M, I)$):

- G is the set of objects,
- (D, \sqcap) corresponds to $(\wp(M), \cap)$ where M is the set of attributes.
- $\delta(g)=g^{\prime}$.

Pattern Structures \Rightarrow FCA

Considering a Pattern Structure $(G,(D, \sqcap), \delta)$ (representation context):

- G is the set of objects,
- $M \subseteq D$.
- $\mathrm{g} / \mathrm{m} \Longleftrightarrow m \sqsubseteq \delta(g)$.

Representation of Binary Relations

We deal with equivalence and tolerance (or dependency) relations.

Equivalence Relation	Tolerance Relation
Equality $(=)$	Similarity (\approx)
Reflexivity \checkmark	Reflexivity \checkmark
Symmetry \checkmark	Symmetry \checkmark
Transitivity \checkmark	Transitivity \boldsymbol{x}
Equivalence Classes	Blocks of Tolerance

Representation of Binary Relations

We have two ways to represent a binary relation $R \subseteq S \times S$
(1) As a set of pairs.
(2) As an enumeration of the classes/blocks of that relation.

A class or block Q is a maximal subset of S such that

$$
\forall p, q \in Q:(p, q) \in R
$$

Representation of Binary Relations

Example of a tolerance relation

$$
\begin{gathered}
\left(t_{1}, t_{3}\right),\left(t_{2}, t_{3}\right),\left(t_{2}, t_{4}\right),\left(t_{3}, t_{4}\right), \\
\left(t_{3}, t_{1}\right),\left(t_{3}, t_{2}\right),\left(t_{4}, t_{3}\right),\left(t_{4}, t_{3}\right), \\
\left(t_{1}, t_{1}\right),\left(t_{2}, t_{2}\right),\left(t_{3}, t_{3}\right),\left(t_{4}, t_{4}\right) \\
\equiv \\
\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{3}, t_{4}\right\}\right\}
\end{gathered}
$$

Representation of Binary Relations

Example of an equivalence relation

$$
\begin{aligned}
& \left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right) \\
& \left(t_{3}, t_{1}\right),\left(t_{4}, t_{2}\right), \\
& \left(t_{1}, t_{1}\right),\left(t_{2}, t_{2}\right),\left(t_{3}, t_{3}\right),\left(t_{4}, t_{4}\right) \\
& \equiv \\
& \quad\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}
\end{aligned}
$$

Representation of Binary Relations

Since both equivalence and tolerance relations are reflexive and symmetric, we usually drop the pairs that show reflexivity and symmetry

$$
\begin{aligned}
& \left(t_{1}, t_{3}\right),\left(t_{2}, t_{3}\right),\left(t_{2}, t_{4}\right),\left(t_{3}, t_{4}\right), \\
& \left(t_{3}, t_{1}\right),\left(t_{3}, t_{2}\right),\left(t_{4}, t_{3}\right),\left(t_{4}, t_{3}\right) \text {, symmetry } \\
& \left(t_{1}, t_{1}\right),\left(t_{2}, t_{2}\right),\left(t_{3}, t_{3}\right),\left(t_{4}, t_{4}\right) \quad \text { reflexivity } \\
& \equiv \\
& \left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{3}\right),\left(t_{2}, t_{4}\right),\left(t_{3}, t_{4}\right)\right\} \equiv\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{3}, t_{4}\right\}\right\}
\end{aligned}
$$

Representation of Binary Relations

Since both equivalence and tolerance relations are reflexive and symmetric, we usually drop the pairs that show reflexivity and symmetry

$$
\begin{array}{ll}
\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right), & \\
\left(t_{3}, t_{1}\right),\left(t_{4}, t_{2}\right), & \text { symmetry } \\
\left(t_{1}, t_{1}\right),\left(t_{2}, t_{2}\right),\left(t_{3}, t_{3}\right),\left(t_{4}, t_{4}\right) & \text { reflexivity } \\
& \equiv \\
\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\} & \equiv\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}
\end{array}
$$

Generalizing Equivalence Relations

Since both equivalence and tolerance relations can be expressed as sets of pairs of elements, the meet and join of two equivalence or tolerance relations are defined as the intersection and the union of sets (of pairs)

$$
\begin{aligned}
&\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{3}, t_{4}\right\}\right\} \wedge\left\{\left\{t_{1}, t_{2}, t_{4}\right\},\left\{t_{1}, t_{3}, t_{4}\right\}\right\} \\
& \equiv \\
&\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{3}\right),\left(t_{2}, t_{4}\right),\left(t_{3}, t_{4}\right)\right\} \cap\left\{\left(t_{1}, t_{2}\right),\left(t_{1}, t_{4}\right),\left(t_{2}, t_{4}\right),\left(t_{1}, t_{3}\right),\left(t_{3}, t_{4}\right)\right\} \\
& \equiv \\
&\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right),\left(t_{3}, t_{4}\right)\right\} \\
& \equiv \\
&\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\},\left\{t_{3}, t_{4}\right\}\right\}
\end{aligned}
$$

(1) Introduction

(2) Notation

(3) Functional Dependencies
4. Soft Functional Dependencies
(5) Degenerate Multivalued Dependencies

6 Conclusion

Functional Dependencies: Definition

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

A functional dependency (FD) $X \rightarrow Y$ holds in T if

$$
\begin{aligned}
\forall t_{i}, t_{j} \in T & : t_{i}(X)=t_{j}(X) \Rightarrow t_{i}(Y)=t_{j}(Y) \\
& a \rightarrow d \text { and } d \rightarrow a \text { hold } \\
& a \rightarrow c \text { does not hold. }
\end{aligned}
$$

Functional Dependencies and FCA: An Example

Functional Dependencies

- Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Mathematical Foundations. Springer.

Functional Dependencies and FCA: An Example

We want to compute the functional dependencies that hold in this table:

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

Functional Dependencies and FCA: An Example

Spoiler Alert!! These are:

$$
\begin{array}{ccccc}
a \rightarrow d & b \rightarrow c d & b c \rightarrow d & b d \rightarrow c & a b \rightarrow c d \\
a c \rightarrow b d & a b c \rightarrow d & a b d \rightarrow c & a c d \rightarrow b &
\end{array}
$$

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

(we ommit trivial FD's: $X \rightarrow Y$, where $Y \subseteq X$)

Functional Dependencies and FCA: An Example

We construct the Formal Context $\mathbb{K}=\left(\mathcal{B}_{2}(G), M, I\right)$

$$
\begin{gathered}
\mathcal{B}_{2}(G)=\left\{\left(t_{i}, t_{j}\right) \mid i<j \text { and } t_{i}, t_{j} \in T\right\} \\
\left(t_{i}, t_{j}\right) / m \Leftrightarrow t_{i}(m)=t_{j}(m)
\end{gathered}
$$

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

\mathbb{K}	a	b	c	d
$\left(t_{1}, t_{2}\right)$				
$\left(t_{1}, t_{3}\right)$	\times			\times
$\left(t_{1}, t_{4}\right)$				
$\left(t_{2}, t_{3}\right)$			\times	
$\left(t_{2}, t_{4}\right)$		\times	\times	\times
$\left(t_{3}, t_{4}\right)$			\times	

Functional Dependencies and FCA: An Example

We construct the Formal Context $\mathbb{K}=\left(\mathcal{B}_{2}(G), M, I\right)$

$$
\begin{gathered}
\mathcal{B}_{2}(G)=\left\{\left(t_{i}, t_{j}\right) \mid i<j \text { and } t_{i}, t_{j} \in T\right\} \\
\left(t_{i}, t_{j}\right) / m \Leftrightarrow t_{i}(m)=t_{j}(m)
\end{gathered}
$$

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

\mathbb{K}	a	b	c	d
$\left(t_{1}, t_{2}\right)$				
$\left(t_{1}, t_{3}\right)$	\times			\times
$\left(t_{1}, t_{4}\right)$				
$\left(t_{2}, t_{3}\right)$			\times	
$\left(t_{2}, t_{4}\right)$		\times	\times	\times
$\left(t_{3}, t_{4}\right)$			\times	

Functional Dependencies and FCA: An Example

We construct the Formal Context $\mathbb{K}=\left(\mathcal{B}_{2}(G), M, I\right)$

$$
\begin{gathered}
\mathcal{B}_{2}(G)=\left\{\left(t_{i}, t_{j}\right) \mid i<j \text { and } t_{i}, t_{j} \in T\right\} \\
\left(t_{i}, t_{j}\right) / m \Leftrightarrow t_{i}(m)=t_{j}(m)
\end{gathered}
$$

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

\mathbb{K}	a	b	c	d
$\left(t_{1}, t_{2}\right)$				
$\left(t_{1}, t_{3}\right)$	\times			\times
$\left(t_{1}, t_{4}\right)$				
$\left(t_{2}, t_{3}\right)$			\times	
$\left(t_{2}, t_{4}\right)$		\times	\times	\times
$\left(t_{3}, t_{4}\right)$			\times	

Functional Dependencies and FCA: An Example

We have the following Formal Concepts:
$(2(G), \emptyset)$
$\left(\left\{\left(t_{1}, t_{3}\right)\right\},\{a, d\}\right)$
$\left(\left\{\left(t_{2}, t_{3}\right),\left(t_{2}, t_{4}\right),\left(t_{3}, t_{4}\right)\right\},\{c\}\right)$
$\left(\left\{\left(t_{2}, t_{4}\right)\right\},\{b, c, d\}\right)$
$\left(\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\},\{d\}\right)$
$(\emptyset,\{a, b, c, d\})$

Functional Dependencies and FCA: An Example

We draw the Concept Lattice.

Functional Dependencies and FCA: An Example

Disclaimer!!

(1) In our papers we change the orientation of the lattice (the top concept will be ($\emptyset,\{a, b, c, d\})$ and the bottom concept will be $(2(G), \emptyset))$.
(2) We also remove the extents from the formal concepts.

Functional Dependencies and FCA: An Example

We can now interpret a functional dependency. A functional dependency $X \rightarrow Y$ holds in T if and only if

$$
X^{\prime}=X Y^{\prime}
$$

in the formal context $\mathbb{K}=\left(\mathcal{B}_{2}(T), \mathcal{U}, I\right)$

$$
a \rightarrow d
$$

holds because

$$
a^{\prime}=a d^{\prime}
$$

\mathbb{K}	a	b	c	d
$\left(t_{1}, t_{2}\right)$				
$\left(t_{1}, t_{3}\right)$	\times			\times
$\left(t_{1}, t_{4}\right)$				
$\left(t_{2}, t_{3}\right)$			\times	
$\left(t_{2}, t_{4}\right)$		\times	\times	\times
$\left(t_{3}, t_{4}\right)$			\times	

Functional Dependencies and FCA: An Example

We can now interpret a functional dependency. A functional dependency $X \rightarrow Y$ holds in T if and only if

$$
X^{\prime}=X Y^{\prime}
$$

in the formal context $\mathbb{K}=\left(\mathcal{B}_{2}(G), M, I\right)$

$$
c \rightarrow b d
$$

does not hold because

$$
c^{\prime} \neq b c d^{\prime}
$$

\mathbb{K}	a	b	c	d
$\left(t_{1}, t_{2}\right)$				
$\left(t_{1}, t_{3}\right)$	\times			\times
$\left(t_{1}, t_{4}\right)$				
$\left(t_{2}, t_{3}\right)$			\times	
$\left(t_{2}, t_{4}\right)$		\times	\times	\times
$\left(t_{3}, t_{4}\right)$			\times	

Functional Dependencies as Partitions

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

The partition of T induced by $X \subseteq \mathcal{U}$ is an equivalence relation of the set of tuples T

$$
\Pi_{X}(T)=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}
$$

Functional Dependencies as Partitions

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

$$
\Pi_{a}(T)=\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}
$$

Functional Dependencies as Partitions

| id | a | b | c | d |
| ---: | :--- | :---: | :---: | :---: | :---: |
| t_{1} | 1 | 3 | 4 | 1 |
| t_{2} | 4 | 3 | 4 | 3 |
| t_{3} | 1 | 8 | 4 | 1 |
| t_{4} | 4 | 3 | 7 | 3 |

Functional Dependencies as Partitions

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

A functional dependency $X \rightarrow Y$ holds in a table T if and only if

$$
\begin{aligned}
\Pi_{X}(T) & =\Pi_{X Y}(T) \\
\Pi_{a}(T)=\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\} & =\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}=\Pi_{a d}(T) \\
& \Rightarrow \\
a & \Rightarrow d \text { holds }
\end{aligned}
$$

Functional Dependencies

- Jaume Baixeries, Mehdi Kaytoue and Amedeo Napoli. Characterizing Functional Dependencies in Formal Concept Analysis with Pattern Structures, Annals of Mathematics and Artificial Intelligence, 72:129-149, 2014.

FD's and Pattern Structures: An Example

We want to compute the functional dependencies that hold in this table:

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

using Pattern Structures

FD's and Pattern Structures: An Example

These are:

$a \rightarrow d$	$b \rightarrow c d$	$b c \rightarrow d$	$b d \rightarrow c$	$a b \rightarrow c d$
$a c \rightarrow b d$	$a b c \rightarrow d$	$a b d \rightarrow c$	$a c d \rightarrow b$	

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

(we ommit trivial FD's: $X \rightarrow Y$, where $Y \subseteq X$)

FD's and Pattern Structures: An Example

We construct the Pattern Structure:

$$
(M,(D, \sqcap), \delta)
$$

- M is the set of attributes \mathcal{U} of the original dataset.
- D is the lattice of partitions of the original table T.
- Π is the meet of partitions.
- $\delta(X): \mathcal{U} \mapsto D$ is $\Pi_{X}(T)$.

FD's and Pattern Structures: An Example

We construct the Pattern Structure $(M,(D, \sqcap), \delta)$ M is the set of attributes \mathcal{U} of the original table:

$$
M=\{a, b, c, d\}
$$

id	a	b	c	d
t_{1}	3	1	2	1
t_{2}	1	3	1	2
t_{3}	3	2	1	1
t_{4}	2	3	1	2

FD's and Pattern Structures: An Example

We construct the Pattern Structure $(M,(D, \sqcap), \delta)$
D is the lattice of partitions of the original table

FD's and Pattern Structures: An Example

We construct the Pattern Structure $(M,(D, \sqcap), \delta)$
\square is the meet in the lattice of partitions of the original table

$$
\left\{t_{1} \mid t_{2} t_{3} t_{4}\right\} \sqcap\left\{t_{1} t_{2} t_{3} \mid t_{4}\right\}=\left\{t_{1}\left|t_{2} t_{3}\right| t_{4}\right\}
$$

FD's and Pattern Structures: An Example

We construct the Pattern Structure $(M,(D, \sqcap), \delta)$ $\delta(X)$ is the function $\Pi_{X}(T)$

FD's and Pattern Structures: An Example

We compute the Pattern Concepts

Closed sets of Objects
$\emptyset \square$
$\{b c d\}^{\square}$
$\{a d\}^{\square}$
$\{c\}^{\square}$
$\{d\}^{\square}$
$\{a b c d\}^{\square}$

Closed sets of descriptions

$$
\begin{array}{ll}
\Pi(T)_{\emptyset} & =t_{1} t_{2} t_{3} t_{4} \\
\Pi(T)_{b c d} & =t_{1}\left|t_{3}\right| t_{2} t_{4} \\
\Pi(T)_{a d} & =t_{1} t_{3}\left|t_{2}\right| t_{4} \\
\Pi(T)_{c} & =t_{1} \mid t_{2} t_{3} t_{4} \\
\Pi(T)_{d} & =t_{1} t_{3} \mid t_{2} t_{4} \\
\Pi(T)_{a b c d} & =t_{1}\left|t_{2}\right| t_{3} \mid t_{4}
\end{array}
$$

FD's and Pattern Structures: An Example

We construct the Pattern Lattice

FD's and Pattern Structures: An Example

The interpretation of FD's in a pattern structure

A functional dependency $X \rightarrow Y$ holds in a data table T if and only if

$$
\{X\}^{\square}=\{X, Y\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\operatorname{Part}(T), \sqcap), \Pi_{X}(T)\right)$

$$
a \rightarrow d \text { holds because }
$$

$$
\Pi(T)_{a}=\{a\}^{\square}=\{a d\}^{\square}=\Pi(T)_{a d}=t_{1} t_{3}\left|t_{2}\right| t_{4}
$$

FD's and Pattern Structures: An Example

The interpretation of FD's in a pattern structure

A functional dependency $X \rightarrow Y$ holds in a data table T if and only if

$$
\{X\}^{\square}=\{X, Y\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\operatorname{Part}(T), \sqcap), \Pi_{X}(T)\right)$

REMEMBER

A functional dependency $X \rightarrow Y$ holds in a data table T if and only if

$$
X^{\prime}=X Y^{\prime}
$$

$$
\text { in the formal context } \mathbb{K}=\left(\mathcal{B}_{2}(T), \mathcal{U}, I\right)
$$

FD's and Pattern Structures: An Example

The interpretation of FD's in a pattern structure

A functional dependency $X \rightarrow Y$ holds in a data table T if and only if

$$
\{X\}^{\square}=\{X, Y\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\operatorname{Part}(T), \sqcap), \Pi_{X}(T)\right)$

$$
a \rightarrow d \text { holds because }
$$

$$
\Pi(T)_{a}=\{a\}^{\square}=\{a d\}^{\square}=\Pi(T)_{a d}=t_{1} t_{3}\left|t_{2}\right| t_{4}
$$

FD's and Pattern Structures: An Example

A functional dependency $X \rightarrow Y$ holds in a data table T if and only if

$$
\{X\}^{\square}=\{X, Y\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\operatorname{Part}(T), \sqcap), \Pi_{X}(T)\right)$

REMEMBER!

$$
\text { Since }\{X\}^{\square}=\delta(X)=\Pi_{X}(T)
$$

A functional dependency $X \rightarrow Y$ holds in a table T if and only if

$$
\Pi_{X}(T)=\Pi_{X Y}(T)
$$

FD's and Pattern Structures: An Example

The interpretation of FD's in a pattern structure

A functional dependency $X \rightarrow Y$ holds in a data table T if and only if

$$
\{X\}^{\square}=\{X, Y\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\operatorname{Part}(T), \sqcap), \Pi_{X}(T)\right)$

$$
d \rightarrow a \text { does not hold because }
$$

$$
t_{1} t_{3}\left|t_{2}\right| t_{4}=\{a d\}^{\square} \neq\{d\}^{\square}=t_{1} t_{3} \mid t_{2} t_{4}
$$

Relationship between Binarization and Pattern Structures

What is the relationship between the formal context $\mathbb{K}=\left(\mathcal{B}_{2}(G), M, I\right)$ and the pattern structure $(M,(D, \sqcap), \delta)$?

Both lattices are isomorphic.
In the pattern lattice, the attributes (of the table T) are the objects, whereas in the concept lattices, they are the attributes.

Relationship between Binarization and Pattern Structures

What is the relationship between the formal context $\mathbb{K}=\left(\mathcal{B}_{2}(G), M, I\right)$ and the pattern structure $(M,(D, \sqcap), \delta)$?
(B, A) is a pattern concept
(A, B) is a formal concept $\Leftrightarrow \begin{aligned} & (M,(D, \sqcap), \delta) \\ & \left(\mathcal{B}_{2}(G), M, I\right)\end{aligned}$

Relationship between Binarization and Pattern Structures

(B, A) is a pattern concept $(M,(D, \sqcap), \delta)$
\Leftrightarrow
(A, B) is a formal concept
($\left.\mathcal{B}_{2}(G), M, I\right)$

Relationship between Binarization and Pattern Structures

(B, A) is a pattern concept
(M, (D, п), $\delta)$
(A, B) is a formal concept $\left(\mathcal{B}_{2}(G), M, I\right)$

The information contained is the same

$$
\begin{aligned}
\left(\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\}, d\right) & \equiv\left(d, t_{1} t_{3} \mid t_{2} t_{4}\right) \\
\left(\left\{\left(t_{1}, t_{3}\right)\right\}, a d\right) & \equiv\left(a d, t_{1} t_{3}\left|t_{2}\right| t_{4}\right)
\end{aligned}
$$

（1）Introduction
（2）Notation
（3）Functional Dependencies

4 Soft Functional Dependencies
（5）Degenerate Multivalued Dependencies

6 Conclusion

Functional Dependencies are not enough

Slight differences in value prevent some intuitive FD's from holding

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	$\mathbf{1}$	1995	36.4	Milan
$t_{\mathbf{2}}$	$\mathbf{1}$	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	$\mathbf{1}$	1998	41.4	Dallas
$t_{\mathbf{6}}$	$\mathbf{1}$	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

Month, City \rightarrow Av. Temp.

Functional Dependencies are not enough

Slight differences in value prevent some intuitive FD's from holding

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	1	1995	36.4	Milan
$t_{\mathbf{2}}$	1	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	1	1998	41.4	Dallas
$t_{\mathbf{6}}$	1	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

Removing some tuples allows a dependency to exist.
For example, the dependency Month, City $\rightarrow A v$. Temp holds if 4 tuples are removed.

Functional Dependencies are not enough

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	$\mathbf{1}$	1995	36.4	Milan
$t_{\mathbf{2}}$	$\mathbf{1}$	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	$\mathbf{1}$	1998	41.4	Dallas
$t_{\mathbf{6}}$	$\mathbf{1}$	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

The idea is to have a dependency that says:
Given cities that are close, in similar months, we can determine within some interval the temperature

Functional Dependencies are not enough

id	Month	Year	Av. Temp.	City
$t_{\mathbf{1}}$	$\mathbf{1}$	1995	36.4	Milan
$t_{\mathbf{2}}$	$\mathbf{1}$	1996	33.8	Milan
$t_{\mathbf{3}}$	5	1996	63.1	Rome
$t_{\mathbf{4}}$	5	1997	59.6	Rome
$t_{\mathbf{5}}$	$\mathbf{1}$	1998	41.4	Dallas
$t_{\mathbf{6}}$	$\mathbf{1}$	1999	46.8	Dallas
$t_{\mathbf{7}}$	5	1996	84.5	Houston
$t_{\mathbf{8}}$	5	1998	80.2	Houston

We soften the definition of RDs:

$$
\begin{gathered}
\forall t_{i}, t_{j} \in T: t_{i}(X)=t_{j}(X) \Rightarrow t_{i}(Y)=t_{j}(Y) \\
\Downarrow \\
\forall t_{i}, t_{j} \in T: t_{i}(X) \approx t_{j}(X) \Rightarrow t_{i}(Y) \approx t_{j}(Y) \\
\quad \text { (where } \approx \text { is user defined })
\end{gathered}
$$

Generalizing Equivalence Relations

We switch from equivalence relations to tolerance/dependency relations

Equivalence Relation	Tolerance Relation
Equality $(=)$	Similarity (\approx)
Reflexivity \checkmark	Reflexivity \checkmark
Symmetry \checkmark	Symmetry \checkmark
Transitivity \checkmark	Transitivity x
Equivalence Classes	Blocks of Tolerance

Generalizing Equivalence Relations

Instead of the operator

$$
\Pi_{X}(T)
$$

that computed the partition of T induced by the set of attributes X, we define the operator

$$
T / \theta_{X}
$$

that computes the tolerance relation induced by the set of attributes X

Tolerance Relations and Blocks of Tolerance

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

We define this tolerance relation
$t_{i} \theta_{m} t_{j} \Longleftrightarrow\left|t_{i}(m)-t_{j}(m)\right| \leq 1$

- $T / \theta_{a}=\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}$
- $T / \theta_{b}=\left\{\left\{t_{1}, t_{2}, t_{4}\right\},\left\{t_{3}\right\}\right\}$
- $T / \theta_{c}=\left\{\left\{t_{1}, t_{2}, t_{3}\right\},\left\{t_{4}\right\}\right\}$
- $T / \theta_{d}=\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}$

Tolerance Relations and Blocks of Tolerance

Although this definition:
$t_{i} \theta_{m} t_{j} \Longleftrightarrow$ their values are somehow related
is very common when defining soft functional dependencies, it is not the only way to define a tolerance relation

Similarity Dependencies

- Jaume Baixeries, Victor Codocedo, Mehdi Kaytoue and Amedeo Napoli. Characterizing Approximate-Matching Dependencies in Formal Concept Analysis with Pattern Structures, Discrete Applied Mathematics, 249:18-27, 2018.

Similarity Dependencies: a Definition

Given a similarity relation θ_{x} (reflexive and symmetric) for each attribute x

The similarity dependency $X \rightarrow Y$ holds in a dataset T iff

$$
\begin{array}{lccc}
\forall t_{i}, t_{j} \in T: & t_{i} \theta_{X} t_{j} & \Rightarrow & t_{i} \theta_{Y} t_{j} \\
\forall t_{i}, t_{j} \in T: & t_{i}(X) \approx t_{j}(X) & \Rightarrow & t_{i}(Y) \approx t_{j}(Y)
\end{array}
$$

Similarity Dependencies and Partition Structures: an Example

Given the tolerance relation: $t_{i} \theta_{m} t_{j} \Longleftrightarrow\left|t_{i}(m)-t_{j}(m)\right| \leq 2$ we want to compute all the similarity dependencies that hold in

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

These are:

$$
a \rightarrow d, a b \rightarrow d, a b c \rightarrow d, a c \rightarrow d, b \rightarrow d, b c \rightarrow d, c \rightarrow d
$$

Similarity Dependencies and Partition Structures: an Example

We construct the Pattern Structure:

$$
(M,(D, \sqcap), \delta)
$$

- M is the set of attributes \mathcal{U} of the original table.
- D is the lattice of tolerance relations of the original table.
- Π is the meet (intersection) of tolerance relations.
- $\delta(m)=G / \theta_{m}$: the tolerance relation induced by θ_{m}.

Similarity Dependencies and Partition Structures: an Example

The interpretation of a similarity dependency

A similarity dependency $X \rightarrow Y$ holds in a table T if and only if

$$
\{X\}^{\square}=\{X Y\}^{\square}
$$

in the pattern structure $(\mathcal{U},($ Tolerance $(T), \sqcap), \theta)$

This is the same interpretation as for Functional Dependencies

Similarity Dependencies and Partition Structures: an Example

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

- With the tolerance relation $t_{i} \theta_{m} t_{j} \Longleftrightarrow\left|t_{i}(m)-t_{j}(m)\right| \leq 2$,
- ac $\rightarrow d$ holds because:

$$
\begin{aligned}
\{a, c\}^{\square}=\delta(a) \sqcap \delta(c) & =\left\{\left\{t_{\mathbf{1}}, t_{\mathbf{3}}\right\},\left\{t_{\mathbf{2}}, t_{\mathbf{4}}\right\}\right\} \sqcap\left\{\left\{t_{\mathbf{1}}, t_{\mathbf{2}}, t_{\mathbf{3}}\right\},\left\{t_{\mathbf{4}}\right\}\right\} \\
& =\left\{\left\{t_{\mathbf{1}}, t_{\mathbf{3}}\right\},\left\{t_{\mathbf{2}}\right\},\left\{t_{\mathbf{4}}\right\}\right\} \\
\{a, c, d\}^{\square}=\delta(a) \sqcap \delta(c) \sqcap \delta(d) & =\{a, c\}^{\square}
\end{aligned}
$$

Similarity Dependencies and Partition Structures: an Example

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

- With the tolerance relation $t_{i} \theta_{m} t_{j} \Longleftrightarrow\left|t_{i}(m)-t_{j}(m)\right| \leq 2$,
- $a b c \rightarrow d$ holds because:

$$
\begin{aligned}
\{a, b, c\}^{\square}=\delta(a) \sqcap \delta(b) \sqcap \delta(c) & =\left\{\left\{t_{\mathbf{1}}\right\},\left\{t_{\mathbf{3}}\right\},\left\{t_{\mathbf{2}}, t_{\mathbf{4}}\right\}\right\} \sqcap\left\{\left\{t_{\mathbf{1}}, t_{\mathbf{2}}, t_{\mathbf{3}}\right\},\left\{t_{\mathbf{4}}\right\}\right\} \\
& =\left\{\left\{t_{\mathbf{1}}\right\},\left\{t_{\mathbf{2}}\right\},\left\{t_{\mathbf{3}}\right\},\left\{t_{\mathbf{4}}\right\}\right\} \\
\{a, b, c, d\}^{\square} & =\{a, b, c\}^{\square}
\end{aligned}
$$

(1) Introduction

(2) Notation

(3) Functional Dependencies

4 Soft Functional Dependencies
(5) Degenerate Multivalued Dependencies

6 Conclusion

Degenerated Multivalued Dependencies

- Jaume Baixeries, Mehdi Kaytoue and Amedeo Napoli. Characterizing Functional Dependencies in Formal Concept Analysis with Pattern Structures, Annals of Mathematics and Artificial Intelligence, 72:129-149, 2014.

Degenerated Multivalued Dependencies: Definition

Let $X \in \mathcal{U}$ and let $\bar{X}=\mathcal{U} \backslash\{X\}$.
A Degenerate Multivalued Dependency $X \rightarrow Y$ holds in a table T iif:

$$
\begin{aligned}
\forall t_{i}, t_{j} \in T: t_{i}(X)=t_{j}(X) \Rightarrow & t_{i}(Y)=t_{j}(Y) \\
& \text { or } \\
& t_{i}(\overline{X Y})=t_{j}(\overline{X Y})
\end{aligned}
$$

Usually, a DMVD $X \rightarrow Y$ is presented:

$$
X \Rightarrow Y \mid Z
$$

where $Z=\mathcal{U} \backslash X Y$ and $X \cup Y \cup Z=\mathcal{U}$

Degenerated Multivalued Dependencies: Definition

Degenerate Multivalued Dependency $X \rightarrow Y$

VS

Functional Dependency $X \rightarrow Y$

$$
\begin{aligned}
\forall t_{i}, t_{j} \in T: t_{i}(X)=t_{j}(X) \Rightarrow & t_{i}(Y)=t_{j}(Y) \\
& \text { or } \\
& t_{i}(\overline{X Y})=t_{j}(\overline{X Y})
\end{aligned}
$$

Degenerated Multivalued Dependencies: Definition

$$
a \Rightarrow b \mid c d \text { holds in }
$$

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	1	3	2	3
t_{3}	4	6	6	2
t_{4}	4	5	6	2

Degenerated Multivalued Dependencies: Definition

$$
a \Rightarrow b \mid c d \text { holds in }
$$

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	1	3	2	3
t_{3}	4	6	6	2
t_{4}	4	5	6	2

Degenerated Multivalued Dependencies: Definition

The tolerance relation $\mathcal{R}_{X}(T)$ in a table T induced by X is:

$$
\mathcal{R}_{X}(T)=\left\{\left(t_{i}, t_{j}\right) \in T \times T \mid i<j \text { and } t_{i}(X)=t_{j}(X) \text { or } t_{i}(\bar{X})=t_{j}(\bar{X})\right\}
$$

For instance,

$$
\left(t_{1}, t_{2}\right) \in \mathcal{R}_{a d}(T)
$$

in:

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3

Degenerated Multivalued Dependencies: Definition

This relation is clearly reflexive and symmetric, but not necessarily transitive:

id	a	b	c	d
t_{1}	1	2	3	4
t_{2}	1	3	4	5
t_{3}	2	3	4	5

$$
\begin{aligned}
& \left(t_{1}, t_{2}\right) \in \mathcal{R}_{a}(T) \checkmark \\
& \left(t_{2}, t_{3}\right) \in \mathcal{R}_{a}(T) \checkmark \\
& \left(t_{1}, t_{3}\right) \notin \mathcal{R}_{a}(T) \times
\end{aligned}
$$

DMVD's and FCA: An Example

We want to compute the degenerate multivalued dependencies that hold in this table:

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

using Formal Concept Analysis

DMVD's and FCA: An Example

These are:

$$
\begin{array}{llll}
a \Rightarrow b \mid c d & a \Rightarrow b c \mid d & a \Rightarrow b d \mid c & d \Rightarrow a \mid b c \\
d \Rightarrow a b \mid c & d \Rightarrow a c \mid b & a b \Rightarrow c \mid d & a c \Rightarrow b \mid d \\
a d \Rightarrow b \mid c & b d \Rightarrow a \mid c & c d \Rightarrow a \mid b
\end{array}
$$

(we ommit trivial DMVD's: $X \Rightarrow Y \mid Z$, where $Y \subseteq X$ or $Z \subseteq X$)

DMVD's and FCA: An Example

We build the Formal Context $\mathbb{K}=\left(\mathcal{U}, \mathcal{B}_{2}(T), I\right)$

\mathbb{K}	a	b	c	d
$\left(t_{1}, t_{2}\right)$		\times	\times	
$\left(t_{1}, t_{3}\right)$	\times	\times	\times	\times
$\left(t_{1}, t_{4}\right)$		\times		
$\left(t_{2}, t_{3}\right)$			\times	
$\left(t_{2}, t_{4}\right)$	\times	\times	\times	\times
$\left(t_{3}, t_{4}\right)$				

$$
x I\left(t_{i}, t_{j}\right) \Longleftrightarrow t_{i}(x)=t_{j}(x) \text { or } t_{i}(\bar{x})=t_{j}(\bar{x})
$$

DMVD's and FCA: An Example

The concept lattice

DMVD's and FCA: An Example

We interpret a DMVD in that formal context
A DMVD $X \Rightarrow Y \mid Z$ holds in a table T if and only if

$$
X^{\prime}=X Y^{\prime} \cup X Z^{\prime}
$$

in the formal context $\mathbb{K}=\left(\mathcal{U}, \mathcal{B}_{2}(T), I\right)$

DMVD's and FCA: An Example

We interpret a DMVD in that formal context
A DMVD $X \Rightarrow Y \mid Z$ holds in a table T if and only if

$$
X^{\prime}=X Y^{\prime} \cup X Z^{\prime}
$$

in the formal context $\mathbb{K}=\left(\mathcal{U}, \mathcal{B}_{2}(T), I\right)$

REMEMBER!

A FD $X \rightarrow Y$ holds in a table T if and only if

$$
X^{\prime}=X Y^{\prime}
$$

in the formal context $\mathbb{K}=\left(\mathcal{U}, \mathcal{B}_{2}(T), I\right)$

DMVD's and FCA: An Example

$$
\begin{gathered}
a \Rightarrow b \mid c d \text { holds because } \\
a^{\prime}=a b^{\prime} \cup a c d^{\prime} \\
\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\}=\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\} \cup\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\}
\end{gathered}
$$

DMVD's and FCA: An Example

$b \Rightarrow a \mid c d$ does not hold because

$$
\begin{gathered}
b^{\prime} \neq a b^{\prime} \cup b c d^{\prime} \\
\left\{\left(t_{1}, t_{2}\right),\left(t_{1}, t_{3}\right),\left(t_{1}, t_{4}\right),\left(t_{2}, t_{4}\right)\right\} \neq\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\} \cup\left\{\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\}
\end{gathered}
$$

DMVD's and Pattern Structures: An Example

We want to compute the degenerate multivalued dependencies that hold in this table:

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

using Pattern Structures

DMVD's and Pattern Structures: An Example

These are:

$$
\begin{array}{llll}
a \Rightarrow b \mid c d & a \Rightarrow b c \mid d & a \Rightarrow b d \mid c & d \Rightarrow a \mid b c \\
d \Rightarrow a b \mid c & d \Rightarrow a c \mid b & a b \Rightarrow c \mid d & a c \Rightarrow b \mid d \\
a d \Rightarrow b \mid c & b d \Rightarrow a \mid c & c d \Rightarrow a \mid b
\end{array}
$$

(we ommit trivial DMVD's: $X \Rightarrow Y \mid Z$, where $Y \subseteq X$ or $Z \subseteq X$)

DMVD's and Pattern Structures: An Example

We construct the Pattern Structure:

$$
(M,(D, \sqcap), \delta)
$$

- M is the set of attributes \mathcal{U} of the original table.
- D is the lattice of tolerance relations of the original table
- Π is the meet in the lattice of tolerance relations of the original table
- $\delta(X)$ is the function $\mathcal{R}_{X}(T)$

DMVD's and Pattern Structures: An Example

We construct the Pattern Structure $(M,(D, \sqcap), \delta)$
M is the set of attributes \mathcal{U} of the original table:

$$
M=\{a, b, c, d\}
$$

id	a	b	c	d
t_{1}	1	3	4	1
t_{2}	4	3	4	3
t_{3}	1	8	4	1
t_{4}	4	3	7	3

DMVD's and Pattern Structures: An Example

We construct the Pattern Structure $(M,(D, \sqcap), \delta)$
The mapping of the descriptions of the attributes

$$
\delta(X): \mathcal{U} \mapsto D \text { is } \mathcal{R}_{X}(T)
$$

$m \in M$	$\delta(m) \in(D, \sqcap)=\mathcal{R}_{m}(T)$
a	$\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}$
b	$\left\{\left\{t_{1}, t_{2}, t_{4}\right\},\left\{t_{1}, t_{3}\right\}\right\}$
c	$\left\{\left\{t_{1}, t_{2}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}$
d	$\left.\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right)\right\}$

DMVD's and Pattern Structures: An Example

We can now compute the closures of sets of objects, and sets of interpretations

$$
\begin{aligned}
\{a, b\}^{\square} & =\delta(a) \sqcap \delta(b) \\
& =\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\} \sqcap\left\{\left\{t_{1}, t_{2}, t_{4}\right\},\left\{t_{1}, t_{3}\right\}\right\} \\
& =\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\} \\
\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\}^{\square} & =\left\{m \in M \mid\left\{\left\{t_{1}, t_{3}\right\},\left\{t_{2}, t_{4}\right\}\right\} \sqsubseteq \delta(m)\right\} \\
& =\{a, b, c, d\}
\end{aligned}
$$

DMVD's and Pattern Structures: An Example

The Pattern Lattice

DMVD's and Pattern Structures: An Example

A DMVD dependency $X \Rightarrow Y \mid Z$ holds in a data table T if and only if:

$$
\{X\}^{\square}=\{X Y\}^{\square} \cup\{X Z\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\right.$ Tolerance $\left.(T), \sqcap), \mathcal{R}_{X}(T)\right)$

DMVD's and Pattern Structures: An Example

A DMVD dependency $X \Rightarrow Y \mid Z$ holds in a data table T if and only if:

$$
\{X\}^{\square}=\{X Y\}^{\square} \cup\{X Z\}^{\square}
$$

in the partition pattern structure $\left(\mathcal{U},(\right.$ Tolerance $\left.(T), \sqcap), \mathcal{R}_{X}(T)\right)$

REMEMBER!

A DMVD $X \Rightarrow Y \mid Z$ holds in a table T if and only if

$$
X^{\prime}=X Y^{\prime} \cup X Z^{\prime}
$$

in the formal context $\mathbb{K}=\left(\mathcal{U}, \mathcal{B}_{2}(T), I\right)$

DMVD's and Pattern Structures: An Example

$$
\begin{gathered}
a \Rightarrow b \mid c d \text { does holds because } \\
\{a\}^{\square}=\delta(a)=\left\{\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\} \\
\{a b\}^{\square}=\delta(a) \sqcap \delta(b)=\left\{\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\} \\
\{a c d\}^{\square}=\delta(a) \sqcap \delta(c) \sqcap \delta(d)=\left\{\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\} \\
\{a\}^{\square}=\{a b\}^{\square} \cup\{a c d\}^{\square}
\end{gathered}
$$

DMVD's and Pattern Structures: An Example

$b \Rightarrow a \mid c d$ does not hold because

$$
\begin{gathered}
\{b\}^{\square}=\delta(b)=\left\{\left\{t_{1}, t_{2}, t_{4}\right\}\left\{t_{1}, t_{3}\right\}\right\} \\
\{a b\}^{\square}=\delta(a) \sqcap \delta(b)=\left\{\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\} \\
\{b c d\}^{\square}=\delta(b) \sqcap \delta(c) \sqcap \delta(d)=\left\{\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\} \\
\left\{\left\{t_{1}, t_{2}, t_{4}\right\}\left\{t_{1}, t_{3}\right\}\right\}=\{b\}^{\square} \neq\{a b\}^{\square} \cup\{a c d\}^{\square}=\left\{\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\}
\end{gathered}
$$

Relationship between Binarization and Pattern Structures

The Concept Lattice and the Pattern Lattice are isomorphic

Relationship between Binarization and Pattern Structures

What is the relationship between the formal context $\mathbb{K}=\left(\mathcal{U}, \mathcal{B}_{2}(T), I\right)$ and the pattern structure $(M,(D, \sqcap), \delta)$?
(A, B) is a pattern concept
(B, A) is a formal concept $\Leftrightarrow \begin{aligned} & (M,(D, \sqcap), \delta) \\ & \left(\mathcal{B}_{2}(G), M, I\right)\end{aligned}$

Relationship between Binarization and Pattern Structures

$$
\begin{aligned}
& (A, B) \text { is a pattern concept } \\
& (B, A) \text { is a formal concept }
\end{aligned} \Leftrightarrow \begin{aligned}
& (M,(D, \sqcap), \delta) \\
& \left(\mathcal{B}_{2}(G), M, I\right)
\end{aligned}
$$

Formal Concept $\quad\left\{\left(t_{1}, t_{2}\right),\left(t_{1}, t_{3}\right),\left(t_{2}, t_{4}\right)\right\} \quad\{b, c\}$
Pattern Concept
$\{b, c\}$
$\left\{\left\{t_{1}, t_{2}\right\}\left\{t_{1}, t_{3}\right\}\left\{t_{2}, t_{4}\right\}\right\}$
（1）Introduction
（2）Notation
（3）Functional Dependencies

4 Soft Functional Dependencies
（5）Degenerate Multivalued Dependencies
（6）Conclusion

Conclusion

- FCA offers a unified framework to deal with different depedencies.
- The semantics of the dependencies is embedded into the binary relation (in a Formal Context) or in the Description semi-lattice plus the δ function (in Pattern Structures).
- The interpretation and the Galois connection behind FCA handles the syntactical side.
- The results using Formal Contexts and Pattern Structures are isomorphic.

Looking Ahead

- The computation of basis for Functional Dependencies is straight forward. Can we extend it to all dependencies?
- Is FCA competitive with current algorithms for computing (minimal) basis for Functional Dependencies?
- There still more dependencies to be come: order dependencies, acyclic join dependencies.

Thanks! !

Thank you very much for your interest

Questions?

